
_L

UMIACS-TR-91-23
CS-TR-2606

February 1991

Support for Comprehensive Reuse *t

V.R. Basili and H.D. Rombach

Institute for Advanced Computer Studies and
Department of Computer Science

University of Maryland
College Park, MD 20742

Abstract

Reuse of products, processes and other knowledge will be the key to enable the software industry

to achieve the dramatic improvement in productivity and quality required to satisfy the anticipated

growing demands. Although experience shows that certain kinds of reuse can be successful, gen-

eral success has been elusive. A software life-cycle technology which allows comprehensive reuse

of all kinds of software-related experience could provide the means to achieving the desired order-

of-magnitude improvements. In this paper, we introduce a comprehensive framework of models,

model-based characterization schemes, and support mechanisms for better understanding, evaluat-

ing, planning,and supporting all aspects of reuse.

*A revised version of this TR will be published in the SOFTWARE ENGINEERING JOURNAL, British Computer

Society, July 1991.

lResearch for this study was supported in part by NASA grant NSG-5123, ONR grant NOOO14-87-K-0307 and

Airmics grant 19K-CN983-C to the University of Maryland.

TABLE OF CONTENTS:

1 INTRODUCTION ...

SCOPE OF COMPREHENSIVE REUSE ..

2.1 Software Development Assumptions

2.2 Software Reuse Assumptions ...

2.3 Software Reuse Model Requirements ...

3 EXISTING REUSE MODELS ...

A COMPREHENSIVE REUSE MODEL ..

4.1 Reuse Model ...

4.2 Model-Based Reuse Characterization Scheme ..

4.2.1 Reuse Candidates ...

4.2.2 Needed Objects ...

4.2.3 Reuse Process ...

4.3 Example Applications of the Comprehensive Reuse Model

5 SUPPORT MECHANISMS FOR COMPREHENSIVE REUSE

5.1 The Reuse Oriented TAME Environment Model ...

5.2 Mechanisms to Support Effective Reuse in the TAME Environment
Model .. :, ...

5.2.1 Recording of Experience ...

5.2.2 Packaging of Experience ...

5.2.3 Identification of Candidate Experience ... :

5.2.4 Evaluation of Experience ..

5.2.5 Modification of Experience ..

5.3 TAME Environment Prototypes ...

6 CONCLUSIONS ...

7 ACKNOWLEDGEMENTS ..

2

3

3

5

9

10

13

13

16

16

18

19

21

25

25

28

29

30

32

32

35

36

37

37

8 REFERENCES ...38

1. INTRODUCTION

The existing gap between demand and our ability to produce high quality software cost-

effectively calls for an improved software development technology. A reuse oriented development

technology can significantly contribute to higher quality and productivity. Quality should

improve by reusing all forms of proven experience including products, processes as well as quality

and productivity models. Productivity should increase by using existing experience rather than

creating everything from scratch.

Reusing existing experience is a key ingredient to progress in any discipline. Without

reuse everything must be re-learned and re-created; progress in an economical fashion is

unlikely. Reuse is less institutionalized in software engineering than in any other engineering dis-

cipline. Nevertheless, there exist successful cases of reuse, i.e. product reuse. The potential

payoff from reuse can be quite high in software engineering since it is inexpensive to store and

reproduce software engineering experience compared to other disciplines.

The goal of research in the area of reuse is to develop and support systematic approaches

for effectively reusing existing experience to maximize quality and productivity. A number of dif-

ferent reuse approaches have appeared in the literature (e.g., [10, 12, 14, 17, 18, 19, 20, 26, 27,

29]).

This paper presents a comprehensive framework for reuse consisting of a reuse model, char-

acterization schemes based upon this model, the improvement oriented TAME environment model

describing the integration of reuse into the enabling software development processes, mechanisms

needed to support comprehensive reuse in the context of the TAME environment model, and (par-

tial) prototype implementations of the TAME environment model. From a number of important

assumptions regarding the nature of software development and reuse we derive four essential

requirements for any useful reuse model and related characterization scheme (Section 2). We illus-

trate that existing models and characterization schemes only partially satisfy these essential

requirements (Section 3). We introduce a new reuse model which is comprehensive in the sense

2 PRECEDING PAGE BLANK NOT FILMED

that it satisfies all four reuse requirements, and use it to derive a reuse characterization scheme

(Section 4). Finally, we point out the mechanisms needed to support effective reuse according to

this model (Section 5). Throughout the paper we use examples of reusing generic Ada packages,

design inspections, and cost model_ to illustrate our approach.

2. SCOPE OF COMPREHENSIVE REUSE

The reuse framework presented in this paper is based on a number of assumptions regarding

software development in general and reuse in particular. These assumptions are based on more

than fifteen years of analyzing software processes and products [2, 5, 7, 8, 9, 23]. From these

assumptions we derive four essential requirements for any useful reuse model and related charac-

terization scheme.

2.1. Software Development Assumptions

According to a common software development project model depicted in Figure 1, the goal

of software development is to produce project deliverables (i.e., project output) that satisfy pro-

ject needs (i.e., project input) [30]. This goal is achieved according to some development process

model which coordinates the interaction between available personnel, practices, methods and

tools.

-3-

personnel t

DEVELOPMENT PROCESS MODEL

tools

Figure 1: Software Development Project Model

With regard to software development we make the following assumptions:

s Software development needs to be viewed as an 'experimental' discipline: An evolu-

tionary model is needed which enables organizations to learn from each development and incre-

mentally improve their ability to engineer quality software products. Such a model requires the

ability to define project goals; select and tailor the appropriate process models, practices,

methods and techniques; and capture the experiences gained from each project in reusable form.

Measurement is essential.

• A single software development approach cannot be assumed for all software

development projects: Different project needs and other project characteristics may suggest

and justify different approaches. The potential differences may range from different develop-

ment process models themselves to different practices, methods and tools supporting these

development process models to different personnel.

• Existing software development approaches need to be tailorable to project needs

and characteristics: In order to reuse existing development process models, practices,

methods and tools across projects with different needs and characteristics, they need to be

4

tailorable.

2.2. Software Reuse Assumptions

Reuse oriented software development assumes that, given the project-specific needs _' for

an object 'x', we consider reusing some already existing object 'x ' instead of creating 'x' fromk

..., 'x ' from an experience base,scratch. Reuse involves identifying a set of reuse candidates 'Xl' , n

evaluating their potential for satisfying _', selecting the best-suited candidate 'Xk' , and - if

required - modifying the selected candidate 'x ' into 'x' Similar issues have been discussed ink

[16]. In the case of reuse oriented development, '_' is not only the specification for the needed

object 'x', but also the specification for all the mentioned reuse activities.

As we learn from each project which kinds of experience are reusable and why, we can

establish better criteria for what should and what shouldn't be made available in the experience

base. The term experience base suggests that anticipate storage of all kinds of software related

experience, not just products. The experience base can be improved from inside as well as out-

side. From inside, we can record experience from ongoing projects which satisfies current reuse

criteria for future reuse, and we can re-package existing experience through various mechanisms

in order to better satisfy our current reuse criteria. From outside, we can infuse experience which

exists out-side the organization into the experience base. It is important to note that the

remainder of this paper deals only with the reuse of experience available in an experience base

and the improvement of such an experience base from inside (shaded portion of Figure 2).

-5-

_transferinto
organizational_'_i_

\

\

\

\

iiiiiiii ii!iiIiii!ilHiiiiiilliiiiiiiiiiiiiii ii i iiiiiiliiillii
iiiii_i_i_i lili!iii

E___i_iiI_iiiii!!!ii!ii!ii!!!!!!!!!!!!i!!!!!!!!!!i!!!!!ii!iiii!!iiii!iii!ii!iiiiiiiiii!!
 i i i ii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Figure 2: Reuse Oriented Software Development Model

With regard to software reuse we make the following assumptions:

• All experience can be reused: Traditionally, the emphasis has been on reusing concrete

objects of type 'source code'. This limitation reflects the traditional view that software equals

code. It ignores the importance of reusing all kinds of software-related experience including

products, processes, and other knowledge. The term 'product' refers to either a concrete docu-

ment or artifact created during a software project, or a product model describing a class of

concrete documents or artifacts with common characteristics. The term 'process' refers to

either to a concrete activity or action - performed by a human being or a machine - aimed at

-6-

creating some software product, or a process model describing a class of activities or actions

with common characteristics. The phrase 'other knowledge' refers to anything useful for

software development, including quality and productivity models or models of the application

being implemented.

The reuse of 'generic Ado packages' represents an example of product reuse. Generic Ada pack-

ages represent templates for instantiating specific package objects according to a parameter

mechanisms. The reuse of 'design inspections' represents an example of process reuse. DeMgn

inspections are off-line fault detection and isolation methods applied during the module design

phase. They can be based on different techniques for reading (e.g., ad hoe, sequential, control

flow oriented, stepwise abstraction oriented). The reuse of 'cost models' represents an example

of knowledge reuse. Cost models arc used in the estimation, evaluation and control of project

cost. They predict cost (e.g., in the form of staff-months) based on a number of characteristic

project parameters (e.g., estimated product size in KLoC, product complexity, methodology

level).

• Reuse typically requires some modification of the object being reused: Under the

assumption that software developments may be different in some way, modification of experi-

enee from prior projects must be anticipated. The degree of modification depends on how

many, and to what degree, existing object characteristics differ from the needed ones. The time

of modification depends on when the reuse needs for a project or class of projects are known.

Modification can take place as part of actual reuse (i.e., the 'modify' within the reuse process

model of Figure 2) and/or prior to actual reuse (i.e., as part of the re-packaging activity in

Figure 2).

To reuse an Ado package 'list of integers' to organize a 'lint of reals' we need to modify it. We

can either modify the existing package by hand, or we can use a generic package 'list' which can

be instantiated via a parameter mechanism for any base type.

To reuse a design inspection method across projects characterized by significantly different fault

profiles, the underlying reading technique may need to be tailored to the respective fault profiles.

If 'interface faults' replace 'control flow faults' as the most common fault type, we can either

select a different reading technique all together (e.g., step-wise abstraction instead o/control-

flow oriented) or we can establish specific guidelines for identifying interface faults.

To reuse a cost model across projects characterized by different application domains, we may

have to change the number and type of characteristic project parameters used for estimating

cost as well as their impact on cost. If 'commercial software' is developed instead of 'real-time

software', we may have to consider re-defining 'estimated product size' to be measured in terms

of 'function points' instead of 'lines of code' or re-computing the impact of the existing parame-

ters on cost. Using a cost model effectively implies a constant updating of our understanding of

therelationshipbetween project parameters and cont.

Analysis is necessary to determine when and if reuse is appropriate: The decision to

reuse existing experience as well as how and when to reuse it needs to be based on an analysis

of the payoff. Reuse payoff is not always easy to evaluate [1]. We need to understand (i) the

reuse needs, (ii) how well the available reuse candidates are qualified to meet these needs, and

(iii) the mechanisms available to perform the necessary modification.

Assume the ezistence of a set of Ada generics which represent application-specific components

of a satellite control system. The objective may be to reuse such components to build a new

satellite control system of a similar type, but with higher precision. Whether the ezisting gener-

ics are suitable depends on a variety of characteristics: Their correctness and reliability, their

performance in prior instances of reuse, their ease of integration into a new system, the poten-

tial for achieving the higher degree of precision through instantiation, the degree of change

needed, and the ezistenee of reuse mechanisms that support this change process. Candidate

Ada generics may theoretically be well suited for reuse; however, without knowing the answers

to these questions, they may not be reused due to lack of confidence that reuse will pay off.

Assume the existence of a design inspection method based on ad-hoe reading which has been

used successfully on past satellite control software developments within a standard waterfall

model. The objective may be to reuse the method in the context of the Cleanroom development

method [22, 25[. In this ease, the method needs to be applied in the context of a different life-
cycle model, different design approach, and different design representations. Whether and how

the existing method can be reused depends on our ability to tailor the reading technique to the

stepwise refinement oriented design technique used in Cleanroom, and the required intensity of

reading due to the omission of developer testing. This results in the definition of the stepwise

abstraction oriented reading technique [11].

Assume the existence of a cost model that has been validated for the development of satellite

control software based on a waterfall life-cycle model, functional decomposition oriented design

techniques, and functional and structural testing. The objective may be to reuse the model in

the context of Cleanroom development. Whether the cost model can be reused at all, how it

needs to be calibrated, or whether a completely different model may bc more appropriate

depends on whether the model contains the appropriate variables needed for the prediction of

cost change or whether they simply need to be re-calibrated. This question can only be answered

through thorough analysis of a number of GIeanroom projects.

Reuse must be integrated into the specific softwar e development: Reuse is intended to

make software development more effective. In order to achieve this objective we need to tailor

reuse practices, methods and tools towards the respective development process.

We have to decide when and how to identify, modify and integrate existing Ada packages. If we

assume identification of Ada generics by name, and modification by the generic parameter

mechanism, we require a repository consisting of Ada generics together with a description of the

instantiation parameters. If we assume identification by specification, and modification of the

oeneric'ncode by shand, we require a suitable specification of each generic, a definition of
semantic closeness of specifications so we can find suitable reuse candidates, and the appropri-

ate source code documentation to allow for ease of modification. In the ease of identification

by specification we may consider identifying reuse candidates at high-level design (i.e., when the

component specifications for the new product exist) or even when defining the requirements.

We have to decide on how often, when, and how design inspections should be integrated into the

development process. If we assume a waterfall-based development life-cycle, we need to deter-

mine how many design inspections need to be performed and when (e.g., once for all modules at

the end of module design, once for all modules of a subsystem, or once for each module). We

need to state which documents are required as input to the design inspection, what result8 are

to be produced, what actions are to be taken, and when, in case the results are insufficient, and

who is supposed to participate.

We have to decide when to initially estimate cost and when to update the initial estimate. If we

assume a waterfall-based development life-cycle, we may estimate cost initially based on

estimated product and process parameters (e.g., estimated product size). After each milestone,

the estimated cost can be compared with the actual cost, Possible deviations are used to correct

the estimate for the remainder of the project.

2.3. Software Reuse Model Requirements

The above software reuse assumptions suggest that 'reuse' is a complex concept. We need to

build models and characterization schemes that allow us to define and understand, compare and

evaluate, and plan the reuse needs, the reuse candidates, the reuse process itself, and the potential

for effective reuse. Based upon the above assumptions, such models and characterization schemes

need to satisfy the following four requirements:

• Applicable to all types of reuse objects: We want to be able to include products, processes

and all other kinds of knowledge such as quality and productivity models.

• Capable of modeling reuse candidates and reuse needs: We want to be able to capture

the reuse candidates as well as the reuse needs in the current project. This will enable us to (i)

judge the suitability of a given reuse candidate based on the distance between the characteris-

tics of the reuse needs and the reuse candidate, and (ii) establish criteria for useful reuse candi-

dates based on anticipated reuse needs.

• Capable of modeling the reuse process itself: We want to be able to (i) judge the ease of

• Definitions of semantic closeness can be derived from existing work I24],

9

bridging the gap between different characteristics of reuse candidates and reuse needs, and (ii)

derive additional criteria for useful reuse candidates based on characteristics of the reuse pro-

tess itself.

• Defined and rationalized so they can be easily tailored to specific project needs and

characteristics: We want to be able to adjust a given reuse model and characterization

scheme to changing project needs and characteristics in a systematic way. This requires not

only the ability to change the scheme, but also some kind of rationale that ties the given reuse

characterization scheme back to its underlying model and assumptions. Such a rationale

enables us to identify the impact of different environments and modify the scheme in a sys-

tematic way.

S. EXISTING REUSE MODELS

A number of research groups have developed (implicit) models and characterization schemes

for reuse (e.g., [12, 14, 17, 26, 27]). The schemes can be distinguished as special purpos_ sehem_s

and meta schemes.

The large majority of published characterization schemes have been developed for a special

purpose. They consist of a fixed number of characterization dimensions. There intention is to

characterize software products as they exist. Typical dimensions for characterizing source code

objects in a repository are 'function', 'size', or 'type of problem'. Example schemes include the

schemes published in [14, 17], the ACM Computing Reviews Scheme, AFIPS's Taxonomy of Com-

puter Science and Engineering, schemes for functional collections (e.g., GAMS, SHARE, SSP,

SPSS, IMSL) and schemes for commercial software catalogs (e.g., ICP, IDS, IBM Software Cata-

log, Apple Book). It is obvious that special purpose schemes are not designed to satisfy the reuse

modeling requirements of section 2.3.

- 10 -

A fewcharacterization schemes can be instantiated for different purposes. They explicitly

acknowledge the need for different schemes (or the expansion of existing ones) due to different or

changing needs of an organization. They, therefore, allow the instantiation of any imaginable

scheme. An excellent example is Ruben Prieto-Diaz's facet-based meta--characterization scheme

[18, 21]. Theoretically, meta schemes are flexible enough to allow the capturing of any reuse

aspect. However, based on known examples of actual uses of meta schemes, such broadness has

not been utilized. Instead, most examples focus on product reuse, are limited to the reuse candi-

dates, and ignore the reuse process entirely. Meta schemes were not designed to satisfy the reuse

modeling requirements of section 2.3.

To illustrate the capabilities of existing schemes, we give the following instance of an exam-

s
ple meta scheme :

* name: What is the product's name? (e.g., buffer.aria, queue.ada, list.pascal)

• function: What is the functional specification or purpose of the product? (e.g., integer queue,

<:element:>_buffer, sensor control system)
• type: What type of product is it? (e.g., requirements document, design document, code docu-

ment)

• granularity: What is the product's scope? (e.g., system level, subsystem level, component

level, module - package, procedure, function - level)
• representation: How is the product represented? (e.g., informal set of guidelines, schematized

templates, languages such as Ada)

• input/output: What are the external input/output dependencies of the product needed to

completely define/extract it as a self-contained entity? (e.g., global data referenced by a code
unit, formal and actual input/output parameters of a procedure, instantiation parameters of a

generic Ada package)

• application domain: What application classes was the product developed for? (e.g. ground

support software for satellites, business software for banking, payroll software)

• The scheme is applicable to all reuse product candidates. For example, a generic Ada package

'buffer.ada' may be characterized as having identifier 'buffer.ada', offering the function

'_element__buffer', being usable as a 'product' of type 'code document' at the 'package

module level', and being represented in 'Ada'. The self-contained definition of the package

requires knowledge regarding the instantiation parameters as well as its visibility of externally

* Characterization dimensions are marked with '*'; example categories for each dimension are listed in parentheses.

- 11-

definedobjects(e.g.,explicit access through WITH clauses, implicit access according to nesting

structure). In addition, effective use of the object may rec_uire some basic knowledge of the

language Ada and assume thorough documentation of the object itself. It may have been

developed within the application domain 'ground support software', according to a 'waterfall

life--cycle' and 'functional decomposition design', and exhibiting high quality in terms of 'relia-

bility'. In order to characterize reuse candidates of type process or knowledge, new categories

need to be generated.

• Such a scheme has typically been used to characterize reuse candidates only. However, in order

to evaluate the reuse potential of a reuse candidate in a given reuse scenario, one needs to

understand the distance between its characteristics and the stated or anticipated reuse needs.

In the case of the Ada package example, the required function may be different, the quality

requirements with respect to reliability may be higher, or the design method used in the current

project may be different from the one according to which the package has been created origi-

nally. Without understanding the distance to be bridged between reuse requirements and reuse

candidates it is hard to (a) predict the cost involved in reusing a particular object, and (b)

establish criteria for populating a reuse repository that supports cost-effective reuse.

• The scheme provides no information for characterizing the reuse process. To really predict the

cost of reuse we do not only have to understand the distance to be bridged between reuse candi-

dates and reuse needs, but also the intended process to bridge it (i.e., the reuse process). For

example, it can be expected that it is easier to bridge the distance with respect to function by

using a parameterized instantiation mechanism rather than modifying the existing package by

hand.

• There is no explicit rationale for the eight dimensions of the example scheme. That makes it

hard to reason about its appropriateness as well as modify it in any systematic way. There is

no guidance in tailoring the example scheme to new needs with respect to what is to changed

(e.g., only some categories, dimensions, or the entire implicitly underlying model) or how it is

- 12 -

to be changed. For example, it is not clear what needs to be changed in order to make the

scheme applicable to reuse candidates of type process or knowledge.

In summary, existing schemes - special purpose as well as meta schemes - only partially

satisfy the requirements laid out above. The most crucial shortcoming is the lack of rationales

which makes it hard to tailor such schemes to changing needs and environment characteristics.

This observation suggests the need for new, broader reuse models and characterization schemes.

In the next section, we suggest a comprehensive reuse model and characterization schemes which

satisfy all four requirements.

4. A COMPREHENSIVE REUSE MODEL

In this section we define a comprehensive reuse model and characterization schemes which

satisfy the requirements stated in section 2.3. We start with a very general reuse model, refine it

step by step until it generates reuse characterization dimensions at the level of detail needed to

understand, evaluate, motivate or improve reuse. This modeling approach allows us to deal with

the complexity of the modeling task itself, and document an explicit rationale for the resulting

model.

4.1. Reuse Model

The comprehensive reuse model used in this section is consistent with the view of reuse

represented in section 2.2. Reuse comprises the transformation of existing reuse candidates into

needed objects which satisfy established reuse needs. The transformation is referred to as reuse

process. Specifications of the needed objects are an essential part of the reuse needs which guide

any reuse process.

- 13 -

:ii';:'!iiii'i_iiiiiiii!iiiii_iiii_i__iiiiiiiiiiiiiiiiiiiiiiiiiiii!iiiiiiiiiiii_,....

 i!i!i!!ii!i!!!!ii!i!iii!!iiiiiii!
REUSE CANDIDATES REUSE PROCESS NEEDED OBJECTS

Figure 3: Abstract Reuse Model (Refinement level O)

The reuse candidates representexperiencefrom the same project,priorprojects,or other sources,

that have been evaluated as being of potentialreusevalue,and have been made availableinsome

form of experiencebase. The reuse needs specifyobjectsneeded in the current project. In the

case of successfulreuse,these needed objectswould be the potentiallymodified versionsof reuse

candidates. Both the reuse candidate and reuseneeds may referto any type of experienceaccu-

mulated in the context of software projectsranging from products to processes to knowledge.

The reuse processtransforms reuse candidatesintoobjectswhich satisfygiven reuse needs.

In order to better understand reuse relatedissueswe refineeach component of the reuse

model further.The resultof thisfirstrefinementstep isdepictedinFigure 4.

- 14 -

i ili
REUSE CANDIDATES REUSE PROCESS NEEDED OBJECTS

Figure 4" Our Reuse Model (Refinement level I)

Each rensc candidate is a specific object considered for reuse. The object has various attri-

butes that describe and bound it. Most objects are physically part of a system, i.e. they interact

with other objects to create some greater object. If we want to reuse an object we must under-

stand its interaction with other objects in the system in order to extract it as a unit, i.e. object

interface. Objects were created in some environment which leaves its characteristics on the

object, even though those characteristics may not be visible. We call this the object context.

Given reuse need8 may be satisfied by a set of reuse candidates. Therefore, we may have to

consider different attributes. The system in which the transformed object is integrated and the

system context in which the system is developed must also be classified.

The reuse proce88 is aimed at extracting a reuse candidate from a repository based on the

characteristics of the known reuse needs, and making it ready for reuse in the system and context

in which it will be reused. We must describe the various rcuee activities and classify them. The

reuse activities need to be integrated into the reuse--enabling software development process. The

means of integration constitute the activity interface. Reuse requires the transfer of experience

across project boundaries. The organizational support provided for this experience transfer is

referred to as activity context.

- 15 -

Baseduponthegoalsfor thespecificproject,aswell as the organization, we must assess (i)

the required qualities of the reused object as stated by the reuse needs, (ii) the quality of the reuse

process, especially its integration into the enabling software evolution process, and (iii) the quality

of the existing reuse candidates.

4.2. Model-Based Reuse Characterization Scheme

Each component of the First Model Refinement (Figure 4) is further refined as depicted in

Figures 5(a-c) . It needs to be noted that these refinements are based on our current understand-

ing of reuse and may, therefore, change in the future.

4.2.1. Reuse Candidates

In order to characterize the object itself, we have chosen to provide the following six dimen-

sions and supplementing categories: the object's name (e.g., buffer.ada), its function (e.g.,

integer buffer), its possible use (e.g., product), its type (e.g., requirements document), its granu-

laxity (e.g., module), and its representation (e.g., Ada language). The object interface consists of

such things as what are the explicit inputs/outputs needed to define and extract the object as a

self-contained unit (e.g., instantiation parameters in the case of a generic Ada package), and what

are additionally required assumptions and dependencies (e.g., user's knowledge of Ada). Whereas

the object and object interface dimensions provide us with a snapshot of the object at hand, the

object context dimension provides us with historical information such as the application classes

the object was developed for (e.g., ground support software for satellites), the environment the

object was developed in (e.g., waterfall life-cycle model), and its validated or anticipated quality

(e.g., reliability).

The resulting model refinement is depicted in Figure 5a.

- 16 -

- name
- function

-- use

i::)iiii[ii[ii - granularity

ii];i input/output
__i_i__ ' dependencms

REUSE CANDIDAT_ [- application domain

Figure 5a: Reuse Model (Reuse Candidates / Refinement level 2)

Each reuse candldate is characterized in terms of

• name: What is the object's name? (e.g., buffer.ada, sel_inspection, sel_cost_model)

• function: What is the functional specification or purpose of the object? (e.g., integer_queue,
<element>_buffer, sensor control system, certify appropriateness of design documents,

predict project cost)

• use: How can the object be used? (e.g., product, process, knowledge)

• type: What type of object is it? (e.g., requirements document, code document, inspection

method, coding method, specification tool, graphic tool, process model, cost model)

• granularlty: What is the object's scope? (e.g., system level, subsystem level, component

level, module - package, procedure, function - level, entire life cycle, design stage, coding

stage)

• representation: How is the object represented? (e.g., data, informal set of guidelines,

schematized templates, formal mathematical model, languages such as Ada, automated tools)

• input/output: What are the external input/output dependencies of the object needed to

completely define/extract it as a self-contained entity? (e.g., global data referenced by a

code unit, formal and actual input/output parameters of a procedure, instantiation parame-

ters of a generic Ada package, specification and design documents needed to perform a design

inspection, defect data produced by a design inspection, variables of a cost model)

• dependencies: What are additional assumptions and dependencies needed to understand the

object? (e.g., assumption on user's qualification such as knowledge of Ada or qualification to

read, specification document to understand a code unit, readability of design document,

homogeneity of problem classes and environments underlying a cost model)

• application domain: What application classes was the object developed for? (e.g. ground

support software for satellites, business software for banking, payroll software)

• solut|on domain: What environment classes was the object developed in? (e.g., waterfall

life-cycle model, spiral life-cycle model, iterative enhancement life-cycle model, functional

decomposition design method, standard set of methods)

• object quality: What qualities does the object exhibit? (e.g., level of reliability, correctness,

user-friendliness, defect detection rate, predictability)

- 17 -

A subset of this scheme has been used in Section 3. In contrast to Section 3, we now have

(i) a rationale for these dimensions (see Figure 5a) and (ii) understand that they cover only part

(i.e., the reuse candidate) of the comprehensive reuse model depicted in Figure 4.

4.2.2. Needed Objects

In order to characterize the needed objects (or reuse needs), we have chosen the same eleven

dimensions and supporting categories as for the reuse candidates. The resulting model refinement

is depicted in Figure 5b:

iiiiiilii!i iiiiiiiili

NEEDED OBJECTS

i name
function

uBe

type

granularity

representation

input/output
dependencies

application domain
solution domain

object quality

Figure 5b: Reuse Model (Reuse Needs / Refinement level 2)

However, an object may change its characteristics during the actual process of reuse.

Therefore, its characterizations before and after reuse can be expected to be different: For exam-

ple, a reuse candidate may be a compiler (type) product (use), and may have been developed

according to a waterfall life-cycle approach (solution domain). The needed object is a compiler

(type) process (use) integrated into a project based on iterative enhancement (solution domain).

- 18 -

This means that despite the similarity between the refined models of reuse candidates and

needed objects, there exists a significant difference in emphasis: In the former case the emphasis is

on the potentially reusable objects themselves; in the latter ease, the emphasis is on the system in

which these object(s} are (or are expected to be) reused. This explains the use of different dimen-

sion names: 'system' and 'system context' instead of 'object interface' and 'object context'.

The distance between the characteristics of a reuse candidate and the needed object give an

indication of the gap to be bridged in the event of reuse.

4.2.3. Reuse Process

The reuse process consists of several activities. In the remainder of this paper, we will use a

model consisting of four basic activities: identification, evaluation, modification, and integration.

In order to characterize each reuse activity we may be interested in its name (e.g., modify.pl), its

function (e.g., modify an identified reuse candidate to entirely satisfy given reuse needs), its type

(e.g., identification, evaluation, modification), and the mechanism used to perform its function

(e.g., modification via parameterization). The interface of each activity may consist of such

things as the explicit input/output interfaces between the activity and the enabling software evo-

lution environment (e.g., in the case of modification: performed during the coding phase, assumes

the existence of a specification), and other assumptions regarding the evolution environment that

need to be satisfied (e.g., existence of certain configuration control policies). The activity context

may include information about how reuse candidates are transferred to satisfy given reuse needs

(experience transfer), and the quality of each reuse activity (e.g., reliability, productivity).

This refinement of the reuse process is depicted in Figure 5c.

- lg -

::::::: ::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::: :::::: ::::::

_iiiii_ii!i!ii!!!!i!!!!!iii!!!ii!!i!i!iiiii!!i!iii!!i!i!i_i!!!ii_ii!iiiiiiiiiiiii_

REUSE PROCESS

-- llame

function

type
mechanism

- input/output
- -_ dependencies

- experience transfer
reuse quality

Figure 5e: Reuse Model (Reuse Process / Refinement level 2)

In more detail, the dimensions and example categories for characterizing the reuse process are:

• REUSE PROCESS: For each reuseactivitycharacterize:

+ Activity:

- name: What is the name of the activity? (e.g., identify.generics, evaluate.generics,

modify.generics, integrate.generics)

- function: What is the function performed by the activity? (e.g., select candidate objects

{x_.) which satisfy certain characteristics of the reuse needs '_'; evaluate the potential of
1

the selectedcandidate objectsofsatisfyingthe given system and system contextdimensions

of the reuse needs '_' and pick the most suited candidate 'xk';modify 'x '
satisfy_; integrateobject'x'into the current development project) k to entirely

- type: What is the type of the activity?(e.g.,identification,evaluation,modification,

integration)

- mechanism: How isthe activityperformed? (in the case of identification:e.g.,by name,

by function,by type and function;in the case of evaluation:e.g.,by subjectivejudgement,

by evaluation of historicalbaseline measurement data; in the case of modification:e.g.,

verbatim, parameterized, template-based, unconstrained; in the case of integration:e.g.,

according to the system configurationplan,according to the project/processplan)

+ Activity Interface:

- input/output: What are explicit input and output interfaces between the reuse activity

and the enabling software evolution environment? (in the case of identification: e.g.,
description of reuse needs / set of reuse candidates; in the case of modification: e.g., one

selected reuse candidate, specification for the object to be reused / object to be reused)
- dependencies: What are other implicit assumptions and dependencies on data and infor-

mation regarding the software evolution environment? (e.g., time at which reuse activity
is performed - relative to the enabling development process: e.g., during design or coding

stages; additional information needed to perform the reuse activity effectively: e.g., pack-

age specification to instantiate a generic package, knowledge of system configuration plan,

configuration management procedures, or project plan)

+ Activity Context:

- experience transfer: What are the support mechanisms for transferring experience across

- 20 -

projects? (e.g., human, experience base, automated)

- reuse quality: What is the quality of each reuse activity? (e.g., high reliability, high

predictability of modification cost, correctness, average performance)

4.3. Example Applications of the Comprehensive Reuse Model

We demonstrate the applicability of our model-based reuse scheme by characterizing the

three hypothetical reuse scenarios which have been used informally throughout this paper: Ada

generics, design inspections, and cost models. The resulting characterizations are summarized in

tables 1, 2, and 3:

- 21 -

Dimensions

name

function

use

type

granularity

representation

input/output

dependencies

application domain

solutiondomain

objectquality

Reuse Examples

Ada generic

buffer.ada

_element _> buffer

product

codedocument,

package

Ada/
generic package

formaland actual

instantiationparams

(typeand number)

assumes Ada knowledge

ground support
sw for satellites

waterfall(Ada)
life-cyclemodel,
functionalde-

compositiondesign
method

high reliability

(e.g., <_ 0.1 defects
per KLoC for a given

set of acceptancetests)

designinspection

sel_inspection.waterfall

certifyappropriateness

of designdocuments

process

inspectionmethod

designstage

informalsetof

guidelines

specificationand

designdocument needed,

defectdataproduced

assumes a readable design,

qualified reader

ground support
sw forsatellites

waterfall(Ada)

life--cyclemodel,
standardsetof

methods

averagedefect
detectionrate

(e.g.,> 0.5 defects

detectedperstaff_hour)

costmodel

sel cost model.fortran

predict
project cost

knowledge

costmodel

entirelifecycle

formalmathematical

model

estimatedproduct
sizeinKLOC,

complexityrating,
methodologylevel,
costinstaffhours

assumes a relatively

homogeneous class

of problemsand environments

ground support
sw for satellites

wateffail (Ada)

life-cyclemodel
standardsetof

methods

average predictability

(e.g., <_ 10_ pre-
diction error)

Table 1: Characterizations of Reuse Candidates

- 22 -

Dimensions

name

funcUon

use

type

granularity

representation

input/output

dependencies

applicationdoms/n

solutiondomain

object quality

AdL genetics

string_buffer.ads

stringbuffer

product

codedocument,

package

Ads

formal and actual

instantiation params
(typeand number)

assumes Ads knowledge

ground support
sw for satellites

waterfall (Ads)
Ills-cyclemodel,
objectoriented

designmethod

high reliability

<_ 0.Idefects

per KLoC for a given
setof acceptancetests},

highperformance

(e.g.,max. responsetimes

fora setof tests}

ReuseExamples

design inspection

sel inspeetion.clesnroom

certifyappropriateness

of designdocuments

process

inspection method

design stage

informtTset of

guidelines

specificationand

design document needed,
defectdat_produced

a_umes _ readable design,
qualified reader

costmodel

se]_costmodel.ads

predict
projectcost

knowledge

costmodel

entirelifecycle

formalmathematical
model

ground support
sw forsatellites

Clesm-oom (Fortrs, n)
development model,
stepwise refinement

oriented design,
statisticaltesting

highdefect

detectionrate
(e.g.,_> 1.0 defects

detectedper staffhour)
wrt.interfacef_'ults

estimatedproduct

size in KLOC,
complexity rating,
methodologylevel,

costinstaYfhours

a_sumes a relatively
homogeneous cl_s

ofproblemsand environments

ground support
sw forsatellites

waterfall(Ads)
life-cyclemodel,
revisedsetof
methods

highpredictability

(e.g., < 5% pre-
diction error}

Table 2: Characterir.atlons of Needed Objects

- 23 -

ReuseExamples

Dimensions Ada generics design inspection cost model

name

function

type

mechanism

input/output

dependencies

experience transfer

reusequality

modify .generics

modify to satisfy

targetspecification

modification

parameterized

(genericmechanism)

buffer.ads,

reuse specification/

string_buffer.ada

performed
during coding stage,

package specification

needed,

knowledge of

system configuration
plan

automated

correctness

modify.inspections

modify tosatisfy

targetspecification

modification

unconstrained

sel_inspection.water fail,
reuse specification/

sel_inspection.cleanroom

performed

duringplanningstage,

knowledgeof

projectplan

human and

experiencebase

modify.cost_models

modifytosatisfy

targetspecification

modification

template-based

sel costmodel.fortran,

reusespecification/
sel costmodel.ada

performed

duringplanning stage,

knowledgeof historical

Ads projectprofiles

experience base

correctness correctness

Table 3: Characterisations of Reuse Processes

- 24 -

5. SUPPORT MECHANISMS FOR COMPREHENSIVE REUSE

According to the reuse oriented software development model depicted in Figure 2, effective

reuse needs to take place in an environment that supports continuous improvement, i.e., record-

ing of experience across all projects, appropriate packaging and storing of recorded experience,

and reusing existing experience whenever feasible. In the TAME project at the University of

Maryland, such an environment model has been proposed and (partial) prototype environments

are currently being built according to this model. In the remainder of this section, we introduce

the reuse oriented TAME environment model, discuss a number of mechanisms for effective reuse,

and introduce several prototype environments being built according to the TAME model.

5.1. The Reuse Oriented TAME Environment Model

The important components of the reuse oriented TAME environment model are depicted in

Figure 6: the project organization which performs individual development projects, the experience

base which stores and actively modifies development experience from all projects, and the

mechanisms for learning and reuse. The shaded areas in Figure 6 indicate how the reuse model of

Figure 3 intersects with the TAME environment model.

- 25 -

REUSEORIENTED SOFTWARE ENVIRONMENT MODEL

PROJECT ORGANIZATION

plan

!
!
I choose
i

characterize i set goals i
i [processes

iliilii !i!liiiii iliiiii!!i!!iii_!iii!iiiiiiiiiiiiiH!iiiiiiiiillii_

t !
i !
I I

execute

construct

analyze

rec°rd t

::i::::!!::!i::ii::i::::!ii::i::iiiiiii::::ii!iii!i!i!!i

iiiiiiiiiiiii!ii!!i!i

formalize

::

i++iiiii+_E_Biiiiiiii

EXPERIENCE BASE

__ tailor

________t generalize

EXPERIENCE FACTORY

Figure 8: Reuse Oriented Software Environment Model

Within the project organization each development project is performed according to the

quality improvement paradigm [3, 9]. The quality improvement paradigm consists of the follow-

ing steps:

- 28 -

1. Plan: Characterize the current project environment so that the appropriate past experience

can be made available to the current project. Set up the goals for the project and refine them

into quantifiable questions and metrics for successful project performance and improvement

over previous project performances (e.g., based upon the goal/question/metric paradigm [9,

13]). Choose the appropriate software development process model for this project with the sup-

porting methods and tools - for both construction and analysis.

2. Execute: Construct the products according to the chosen development process model, methods

and tools. Collect the prescribed data, validate and analyze it to provide feedback in real-time

for corrective action on the current project.

3. Package: Analyze the data in a post-mortem fashion to evaluate the current practices, deter-

mine problems, record findings and make recommendations for improvement for future pro-

jects. Package the experiences in the form of updated and refined models and other forms of

structured knowledge gained from this and previous projects, and save it in an experience base

so it can be available to future projects.

The experience base contains reuse candidates of different types, granularity and representa-

tion. Example entries in the case of the examples described in section 4.3 include objects of type

'code document', granularity 'package' and representation 'Ada'; objects of type 'inspection

method', granularity 'design stage' and representation 'schematized template'; and objects of type

'cost model', granularity 'entire life cycle' and representation 'formal mathematical model'.

During each step of a development project performed according to the quality improvement

paradigm reuse needs are identified and matches made against reuse candidates available in the

experience base. During the characterization step, characteristics of the current project environ-

ment can be used to identify appropriate past experience in the experience base, e.g. based on

project characteristics the appropriate instantiation of a cost model can be generated. During the

planning step, project goals can be used to identify existing similar goal/question/metric models

or process/product/quaiity models in the experience base, e.g., based on project goals a

- 27 -

goal/question/metric model can be chosen for evaluating a design inspection method. During the

execution step, product specifications can be used to identify existing components from prior pro-

jects, such as Ada generics. During the feedback step, the analysis goals generated during plan-

ning are used as the basis of analysis by fitting baselines to compare against the current data. As

part of the feedback step a decision is made as to which experiences are worth recording. The

degree of guidance that can be provided for entering reuse candidates into the experience base

depends upon the accumulated knowledge of expected reuse requests for future projects.

The experience base is part of an active organizational entity, referred to a the Experience

Factory [4], that supports project developments by analyzing and synthesizing all kinds of experi-

ence, acting as a repository for such experience, and supplying that experience to various projects

on demand. In the context of the reuse oriented software environment model, the Experience Fac-

tory not only stores experience in a variety of repositories, but performs the constant modification

of experience to increase its reuse potential. Example modifications address the formalization of

experience (e.g., building a cost model empirically based upon the data available), tailoring of

experience to fit the needs of a specific project (e.g., instantiating an Ada package from a generic

package), and the generalizing of experience to be applicable across project classes (e.g., develop-

ing a generic package from a specific package). It plays the role of an organizational 'server 3

aimed at satisfying project specific reuse requests effectively [4]. The constant collection of meas-

urement data regarding reuse needs and the reuse processes themselves enables the judgements

needed to populate the experience base effectively and select the best suited reuse candidates.

The use of the quality improvement paradigm within the project organization enables the integra-

tion of measurement-based analysis and construction.

5.2. Mechanisms to Support Effective Reuse in the TAME Environment Model

Improvement in the reuse oriented TAME environment model of Figure 6 is based on the

feedback of experience captured from prior projects into ongoing and future software develop-

- 28 -

menU. The mechanisms needed to support effective feedback are listed in Figure 7.

feed baek

learn reuse

record package identify evaluate modify

Figure 7: Mechanisms needed to Support Effective Feedback of Experience

Feedback requires learning and reuse. Although learning and reuse are possible in any

environment, we are interested in addressing and supporting them explicitly and systematically.

Systematic learning requires support for the recording of experience in some experience base and

its packaging in order to increase its reuse potential for anticipated reuse needs in future develop-

ments. Systematic reuse requires support for the identification of candidate experience, its

evaluation, and modification.

Reuse and learning are possible in any environment. However, we want learning and reuse

to be explicitly planned, not implicit or coincidental. In the reuse oriented software development

environment, learning and reuse are explicitly modeled and become desired characteristics of

software development. They are specific processes performed in conjunction with the Experience

Factory.

5.2.1. Recording of Experience

The objective of recording experience is to create a repository of well specified and organ-

ized experience. This requires a precise characterization of the reuse candidates to be recorded,

the design and implementation of a comprehensive experience base, and effective mechanisms for

collecting, qualifying, storing and retrieving experience. The characterization of reuse candidates

- 29 -

isderived from characterizationsof known reuse needs and reuse processes.The characterization

of reusecandidates describeswhat informationneeds tobe storedin addition to the objectsthem-

selvesin order to make them reusable,and how it should be packaged. The experiencebase

replacesthe projectdatabase of traditionalenvironment models by the more comprehensive con-

cept of an experience base which isintended to capture the entirebody of experiencerecorded

during the planning and executionstepsof allsoftware projectswithin an organization.

Examples of recording experienceinclude the storing of Ada generics,design inspection

methods, and cost models. Based on our reuse model, Table 1 describesthe information needed

in conjunctionwith each of theseobjecttypes in order to make them likelyreuse candidates to

satisfythe hypotheticalreuse needs using the hypotheticalreuse processesdescribed in Tables 2

and 3, respectively.For example, in the case of Ada generics,we may requireeach object to be

augmented with information on the number of instantiationparameters, the applicationand solu-

tion domain, and the expected or demonstrated reliability.Ifwe can quantify such information

(e.g.,Ada genericsdeveloped withinground support software projects,Ada genericswith lessthan

5 instantiationparameters are acceptable),we can use itto exclude inappropriate objectsfrom

being recorded in the firstplace.

5.2.2. Packaging of Experience

The objective of packaging experience is to increase its reuse potential. This requires a pre-

cise characterization of the new reuse needs or processes, and effective mechanisms for generaliz-

ing, generalizing and formalizing experience. Packaging may take place at the time of first

recording experience into the experience base or at any later time when new reuse needs reuse

needs become known or our understanding of the interrelationship between reuse candidates,

reuse needs and reuse processes changes.

The objective of generalizing existing experience prior to its reuse is to make a candidate

reuse object useful in a larger set of potential target applications. The objective of tailoring exist-

- 30 -

ing experience prior to its potential reuse is to fine-tune a candidate reuse object to fit a specific

task or exhibit special attributes, such as size or performance. The objective of formalizing exist-

ing experience prior to its actual reuse is to increase the reuse potential of reuse candidates by

encoding them in more precise, better understood ways. These activities require a well-

documented cataloged and categorized set of reuse candidates, mechanisms that support the

modification process, and an understanding of the potential reuse needs. Generalization and

tailoring are specifically concerned with changing the application and solution domain characteris-

tics of reuse candidates: from project specific to domain specific to project specific and vice versa.

Objectives and characteristics are different from project to project, and even more so from

environment to environment. We cannot reuse past experience without modifying it to the needs

of the current project. The stability of the environment in which reuse takes place, as well as the

origination of the experience, determine the amount of tailoring required. Formalization activities

are concerned with movement across the boundaries of the representation dimension within the

experience base: from informal to schematized and then to formal.

Examples of tailoring experience include the instantiation of a set of specific Ada packages

from a generic package available in an object oriented experience base, the fine--tuning of a cost

model to the specific characteristics of a class of projects, and the adjustment of a design inspec-

tion method to focus on the class of defects common to the application. Examples of generalizing

experience include the creation of a generic Ads package from a set of specific Ada packages, the

creation of a general cost model from a set of domain specific cost models, and the definition of

an application and solution domain specific design inspection method based on the experience

with design inspections in a number of specific projects. Examples of formalization include the

writing of functional specifications for generic Ada packages, providing automated support for

checking adherence to entry and exit criteria of a design inspection method, and building a cost

model empirically based upon the data available in an experience base.

- 31 -

A misunderstanding of the importance of tailoring exists in many organizations. These

organizations have specific development guidebooks which are of limited value because they 'are

written for some ideal project' which 'has nothing in common with the current project and, there-

fore, do not apply'. All guidebooks (including standards such as DOD-STD-2167) are general and

need to be tailored to each project in order to be effective.

5.2.3. Identification of Candidate Experience

The objective of identifying candidate experience is to find a set of candidates with the

potential to satisfy project specific reuse needs. This requires a precise characterization of the

reuse needs, some organizational scheme for the reuse candidates available in the experience base,

and an effective mechanism for matching characteristics Of the project specific reuse needs against

the experience base.

Let's assume, for example, that we need an Ada package which implements a 'string_buffer'

with high 'reliability and performance' characteristics. This need may have been established dur-

ing the project planning phase based on domain analysis, or during the design or coding stages.

We identify candidate objects based on some subset of the object related characteristics stated in

Table 2: string buffer.ada, string buffer, product, code document, package, Ada [28]. The more

characteristics we use for identification, the smaller the resulting set of candidate objects will be.

For example, if we include the name itself, we will either find exactly one object or none.

Identification may take place during any project stage. We will assume that the set of success-

fully identified reuse candidates contains 'buffer.aria', the object characterized in Table 1.

5.2.4. Evaluation of Experience

The objective of evaluating experience is to characterize the degree of discrepancies between

a given set of reuse needs (see Table 2) and some identified reuse candidate (Table 1), and (ii)

predict the cost of bridging the gap between reuse candidates and reuse needs. The first type of

- 32 -

evaluationgoalcanbe achievedby capturing detailed information about reuse candidates and

reuse needs according 'to the dimensions of the presented characterization scheme. The second

goal requires the inclusion of data characterizing the reuse process itself and past experience about

similar reuse activities. Effective evaluation requires precise characterization of reuse needs, reuse

processes and reuse candidates; knowledge about their relationships, and effective mechanisms for

measurement.

The knowledge regarding the interrelationship between reuse needs, processes and candi-

dates is the result of the proposed evolutionary learning which takes place within the reuse

oriented TAME environment model. The mechanisms used for effective measurement are based

on the goal/question/metric paradigm [9, 11, 13]. It provides templates for guiding the selection

of appropriate metrics based on a precise definition of the evaluation goal. Guidance exists at the

level of identifying certain types of metrics (e.g., to quantify the object of interest, to quantify the

,perspective of interest, to quantify the quality aspect of interest). Using the goal/question/metric

paradigm in conjunction with reuse characterizations like the ones depicted in Tables 1, 2, and 3,

provides very detailed guidance as to what exact metrics need to be used. For example, evaluation

of the Ada generic example suggests metrics to characterize discrepancies between the reuse needs

and all available reuse candidates in terms of (i) function, use, type, granularity, and representa-

tion on a nominal scale defined by the respective categories, (ii) input/output interface on an

ordinal scale 'number of instantiation params', (iii) application and solution domains on nominal

scales, and (iv) qualities such as performance based on benchmark tests.

For example, we want to evaluate the reuse potential of the object 'buffer.ada' identified in

the previous subsection. We need to evaluate whether and to what degree 'buffer.ada' (as well as

any other identified candidate) needs to be modified and estimate the cost of such modification

compared to the cost required for creating the desired object 'stringbuffer' from scratch. Three

characteristics of the chosen reuse candidate deviate from the expected ones: it is more general

than needed (see function dimension), it has been developed according to a different design

- 83 -

approach (see solution domain dimension), and it does not contain any information about its per-

formance behavior (see object quality dimension). The functional discrepancy requires instantiat-

ing object 'buffer.ada' for data type 'string'. The cost of this modification is extremely low due

to the fact that the generic instantiation mechanism in Ada can be used for modification (see

Table 3). The remaining two discrepancies cannot be evaluated based on the information avail-

able through the characterizations in section 4.3. On the One hand, ignoring the solution domain

discrepancy may result in problems during the integration phase. On the other hand, it may be

hard to predict the cost of transforming 'buffer.ada' to adhere to object oriented principles.

Without additional information about either the integration of non-object oriented packages or

the cost of modification, we only have the choice between two risks. Predicting the cost of

changes necessary to satisfy the stated object performance requirements is impossible because we

have no information about the candidate's performance behavior. It is noteworthy that very often

practical reuse seems to fail because of lack of appropriate information to evaluate the reuse

implications a-priori, rather than because of technical infeasibility [15].

The characterization of both reuse candidates and needs and the reuse process allow us to

understand some of the implications and risks associated with discrepancies between identified

reuse candidates and target reuse needs. Problems arise when we have either insufficient informa-

tion about the existence of a discrepancy (e.g., object performance quality in our example), or no

understanding of the implications of an identified discrepancy (e.g., solution domain in our exam-

ple). In order to avoid the first type of problem, one may either constrain the identification pro-

cess further by including characteristics other than just the object related ones, or not have any

objects without 'performance' data in the reuse repository. If we had included 'desired solution

domain' and 'object performance' as additional criteria in our identification process, we may not

have selected object 'buffer.ada' at all. If every object in our repository would have performance

data attached to it, we at least would be able to establish the fact that there exists a discrepancy.

In order to avoid the second type of problem, we need have some (semi-) automated modification

mechanism, or at least historical data about the cost involved in similar past situations. It is

- 34 -

clear that in our example any functional discrepancy within the scope of the instantiation param-

eters is easy to bridge due to the availability of a completely automated modification mechanism

(i.e., generic instantiation in Ada). Any functional discrepancy that cannot be bridged through

this mechanisms poses a larger and possibly unpredictable risk. Whether it is more costly to re-

design 'buffer.ada' in order to adhere to object oriented design principles or to re-develop it from

scratch is not obvious without past experience. A mechanism for modeling all kinds of experience

is given in [6].

5.2.5. Modification of Experience

The objective of modifying experience is to bridge the gap between a selected reuse candi-

dates and given reuse needs. This requires a precise characterization of the reuse needs, and effec-

tive mechanisms for modification. Technically, modification mechanisms are very similar to the

tailoring (and generalization) mechanism introduced for packaging experience. Tailoring here is

different in that during modification the target is described by concrete, project specific reuse

needs, whereas during packaging the target is typically imprecise in that it reflects anticipated

reuse needs in a class of future projects. We refer to tailoring (and generalizing) as 'off-line'

(during packaging) or 'on-line' (during modification) depending on whether it takes place before

or as part of a concrete instance of reuse.

Examples of modifying experience - similar to the examples given earlier for tailoring -

include the instantiation of a set of specific Ada packages from a generic package available in an

object oriented experience base, the fine--tuning of a cost model to the specific characteristics of a

class of projects, and the adjustment of a design inspection method to focus on the class of defects

common to the application.

- 35 -

5.3. TAME Environment Prototypes

In the TAME (Tailoring A Measurement Environment) project, we investigate fundamental

issues related to the reuse- (or improvement-) oriented software environment model of Figure 6

and build a series of (partial) research prototype versions [8, 9, 15].

Current research topics include the formalization of the goal/question/metric paradigm for

effective software measurement and evaluation; the development of formalisms for representing

software engineering experience such as quality models, lessons learned, process models, product

models; the development of models for packaging experience in the experience base; and the

development of effective mechanisms to support learning and reuse within the experience factory

(e.g., qualification, formalization, tailoring, generalization, synthesis). In addition, various slices

of an evolving TAME environment are being prototyped in order to study the definition and

integration of different concepts.

Aspects of the TAME research prototypes, currently being developed at the University of

Maryland, can be classified best by the different classes of experience they attempt to generate,

maintain and reuse:

• Support for identifying objects by browsing through projects, goals and processes based on a

facet-based characterization mechanism.

• Support for the generalization, tailoring, and integration of a variety experience types based on

an object oriented experience base model.

• Support for the definition of environment specific cost and resource allocation models and their

tailoring, generalization and formalization based on project experience.

• Support for the definition of test techniques in terms of entry and exit criteria that provides a

method for selecting the appropriate technique for each project phase based on environment

characteristics, data models, and project goals.

• Support for the definition of process models and their formalization, generalization and tailor-

ing based on project experience.

- 36 -

• Support for an experiencefactoryarchitecturethat supports the evolutionof the organization.

6. CONCLUSIONS

We have introduced a comprehensive reuse framework consistingof reuse models, model-

based characterizationschemes, the TAME environment model supporting the integrationof

reuse into software development, and ongoing research and development effortstoward a TAME

environment prototype.

The presented reuse model and relatedmodel-based characterizationschemes have advan-

tagesover existingmodels and schemes in that they (a)allow us to capture the reuse of any type

of experience,(b) address reuse candidates and reuse needs as well as the reuse processitself,and

(c) provide a rationale for the chosen characterizingdimensions. We have demonstrated the

advantages of such a comprehensive reuse model and relatedschemes by applying them to the

characterizationof example reuse scenarios.Especiallytheirusefulnessfor definingand motivat-

ing the support mechanisms for comprehensive reuse and learningwere stressed.

Finally,we introduced the TAME environment model which supports the integrationof

reuse into software developments. Several partial instantiationsof the TAME environment

model, currentlybeing developed at the University of Maryland, have been mentioned. In order

to make reuse a reality,more research isrequired towards understanding and conceptualizing

activitiesand aspectsrelatedto reuse,learningand experiencefactorytechnology.

7. ACKNOWLEDGEMENTS

We thank all our colleagues and graduate students who contributed to this paper, especially

all members of the TAME, CARE and LASER projects. We also thank the Guest Editors, Nazim

H. Madhavji and Wilhelm Schaefer, and the anonymous referees for their excellent suggestions for

- 37 -

improvingthispaper.

8. REFERENCES

[1] B.H. Barnes and T. B. Bollinger, "Making Reuse Cost-Effective", IEEE Software Maga-

zine, January 1991, pp. 13-24.

[2] V.R. Basili, "Can We Measure Software Technology: Lessons Learned from Eight Years of

Trying", in Proc. Tenth Annual Software Engineering Workshop, NASA Goddard Space

Flight Center, Greenbelt, MD, December 1985.

[3] V.R. Basili, "Quantitative Evaluation of Software Methodology", Dept. of Computer
Science, University of Maryland, College Park, TR-1519, July 1985 [also in Proc. of

the First Pan Pacific Computer Conference, Australia, September 1986].

[4] V.R. Basili, "Software Development: A Paradigm for the Future", Proc. 13th Annual

International Computer Software & Applications Conference, Orlando, FL, September 20-
22, 1989.

[5] V.R. Basili, "Viewing Maintenance as Reuse Oriented Software Development", IEEE

Software Magazine, January 1990, pp. 19-25.

[6] V.R. Basili, G. Caldiera, and G. Cantone, *A Reference Architecture for the Component

Factory", Technical Report TR-3333, Dept. of Computer Science, University of Maryland,

College Park, MD 20742, March 1991.

[7] V.R. Basili and H. D. Rombaeh, "Tailoring the Software Process to Project Goals and

Environments", Proc. of the Ninth International Conference on Software Engineer-

ing, Monterey, CA, March 30 -April 2, 1987, pp. 345-357.

[8] V.R. Basili and H. D. Rombach, "TAME: Integrating Measurement into Software

Environments', Technical Report TR-1764 (or TAME-TR-l-1987), Dept. of Computer
Science, University of Maryland, College Park, MD 20742, June 1987.

[9] V.R. Basili and H. D. Rombach "The TAME Project: Towards Improvement Oriented

Software Environments", IEEE Transactions on Software Engineering, vol. SE-14, no. 6,

June 1988, pp. 758-773.

[10] V. R. Basili and H. D. Rombach, "Towards a Comprehensive Framework for Reuse: A

Reuse-Enabling Software Evolution Environment (part I)/Model-Based Reuse Characteri-
zation Schemes (part II) u, Technical Reports, Dept. of Computer Science (CS-TR-

2158/CS-TR-2446) and UMIACS (UMIACS-TR-88-92/UMIACS--TR-90-47), University

of Maryland, College Park, MD 20742, December 1988/April 1990.

[11] V. R. Basili and R. W. Selby, "Comparing the Effectiveness of Software Testing Stra-

tegies', IEEE Transactions on Software Engineering, vol.SE-13, no.12, December 1987,

pp.1278-1296.

[12] V.R. Basili and M. Shaw, "Scope of Software Reuse", White paper, working group on

'Scope of Software Reuse', Tenth Minnowbrook Workshop on Software Reuse, Blue

Mountain Lake, New York, July 1987 (in preparation).

[18] V. R. Basili and D. M. Weiss, "A Methodology for Collecting Valid Software Engineering

Data', IEEE Transactions on Software Engineering, vol.SE-10, no.3, November 1984,

pp.728-738.

- 88 -

[14] Ted BiggerstaSf,"Reusability Framework, Assessment, and Directions',IEEE Software

Magazine, March 1987, pp.41-49.

[15] G. Caldlera and V. R. Basili,"ReengineeringExistingSoftware for Reusability',Technical

Report (UMIACS-TR-90-30, CS-TR-2419), Dept. of Computer Science, University of

Maryland, College Park, MI) 20742,February 1990.

[16] S. Cardenas and M. V. Zelkowitz,"Evaluation Criteriafor Functional Specifications',Proc.

of the 12th IEEE InternationalConference on Software Engineering, Nice, France, March

26-30, i990, pp. 26-33.

[17] P. Freeman, "Reusable Software Engineering: Concepts and Research Directions',Proc.

of the Workshop on Reusability,September 1983,pp. 63-76.

[18] R. Prieto-Diaz and P. Freeman, "Classifying Software for Reusability',IEEE Software,

vol.4,no.l,January 1987, pp. 6-16.

[19] IEEE Software,specialissueon 'Reusing Software',vol.4,no.l,January 1987.

[20] IEEE Software,specialissueon 'Tools:Making Reuse a Reality',vol.4,no.7,July 1987.

[21] G.A. Jones and R. Prieto-Diaz,"Building and Managing Software Libraries',Proc. Coral>-

sac'88,Chicago, October 5-7, 1988,pp. 228-236.

[22] A. Kouchakdjian, V. R. Basili,and S. Green, "The Evolution of the Cleanroom Process in

the Software Engineering Laboratory', IEEE Software Magazine (to appear 1990).

[23] F. E. McGarry, "Recent SEL Studies", in Proc. Tenth Annual Software Engineering

Workshop, NASA Goddard Space FlightCenter,Greenbelt,MI), Dec. 1985.

[24] A. Mill,W. Xiao-Yang, and Y. Qing, "SpecificationMethodology: An IntegratedRelational

Approach', Software - Practice and Experience,vol.16, no. 11, November 1986, pp. 1003-

1030.

[25] R.W. Selby, Jr.,V. R. Basili,and T. Baker, "CLEANROOM Software Development: An

Empirical Evaluation', IEEE Transactions on Software Engineering, vol. SE--13,no. 9,

September 1987,pp.1027-1037, :

[26] Mary Shaw, "Purposes and Varieties of Software Reuse', Proceedings of the Tenth

Minnowbrook Workshop on Software Reuse, Blue Mountain Lake, New York, July,
1987.

[27] T. A. Standish, "An Essay on Software Reuse", IEEE Transactions on Software

Engineering, vol. SE-10, no. 5, September 1984, pp.494-497.

[28] P.A. Straub and E. J. Ostertag, "EDF: A Formalism for describing and Reusing Software

Experience', Proceedings of the International Symposium on Software Reliability Engineer-

ing, Austin, Texas, May 1991.

[29] W. Tracz, "Tutorial on 'Software Reuse: Emerging Technology", IEEE Catalog Number
EHO278-2, 1988.

[30] M. V. Zelkowitz (ed.), =Proceedings of the University of Maryland Workshop on

'Requirements for a Software Engineering Environment', Greenbelt, MI), May 1986 =,

Technical Report TR-1733, Dept. of Computer Science, University Of Maryland, Col-

lege Park, MD 20742, December 1986 [also published by, Ablex Publ., 1988].

- 39 -

